A greener White House

As promised by Energy Secretary Chu and White House Council on Environmental Quality Sutley in 2010, the Obama administration is joining the legacy—alongside Presidents James Carter and George W. Bush—of using solar energy to power the White House.

The solar panels being installed on the White House are an important symbol of federal commitment to renewable energy. Even more important, however, is the administration’s greater commitment, which Juliet Eilperin reports as a pledge to generate 20% of the energy consumed by the federal government—including the militaryfrom renewable resources by 2020.

20% of federal energy use isn’t a huge number in global, or even national, terms. To put it in perspective, we consume about 4.4 million Gigawatt-hours each year in the US, while 20% of federal energy consumption only amounts to about 3 Gigawatt-hours. But every bit counts! Worthwhile progress is often piecemeal—and to cast it in more relatable terms: generating 3 Gigawatt-hours from another source would require, for example, over 3,200 pounds of coal. By getting that energy from the Sun, we spare the atmosphere more than 63,000 pounds of carbon dioxide.

The panels at 1600 Pennsylvania Ave. only represent a small fraction of this overarching goal, but greening the White House is, in my opinion, wise both for both politics and aesthetics.

To the sun god!

Mars in 30 days? Solar powered space flight

Here I thought the Solar Impulse was a breakthrough in solar powered flight, but NASA, the University of Washington, and Elon Musk of SpaceX (among others) have turned it to 11. With a new Fusion Driven Rocket (FDR) design, engineers may be able to cut the trip to Mars from 8 months to somewhere between 30 and 90 days. And what’s more: the engine operates via “magnetic inertial confinement fusion,” which, thankfully its designers explain, means that the rocket’s fusion reactor could be run by solar power alone–200 KW to be exact (an extremely feasible number). If flying from California to New York on solar energy as the Impulse team intends is impressive (and it is), then the FDR team’s plan for solar powered space flight is out of this world.

Colonizing Mars–part of Musk’s plan for making life multi-planetary to ensure that “the light of consciousness is not extinguished”–is undoubtedly among the more fantastical utopian visions of the future of humanity. Moreover, the team hopes to eventually make interplanetary travel so efficient that it’s commonplace. Skeptics and detractors (myself sometimes among them) may question the endeavor on “realist” or ethical grounds, claiming that either resource scarcity or social collapse is likely to preclude any significant opportunities for interplanetary migration, or that leaving the Earth behind is a defeatist reaction to socio-ethical challenges here at home, like stabilizing the modern ecological crisis. Indeed, I still think these points have some validity.

But Julian Simon’s infinite resource of human innovation again rears its head. The FDR is already in the pipeline, so to speak. And I’ll be the first to champion the triumphs of solar technology–especially when space travel is involved. Like so many others I’m sure, the prospect of an interstellar humanity speaks volumes to my inner Lewis and Clark–the passion for adventure and discovery too often squelched by the pervasive impact of human activity on and ubiquitous presence in what remains of natural world.

Interplanetary exploration and colonization promise new environments, mysteries, challenges, and questions–philosophical and otherwise. Should we leave Earth in the first place? What is the purpose of colonizing another planet? What would “environmental philosophy” mean if/when we depart from our environment of origin? What new responsibilities do we have to the non-human if and when we undertake massive martian geo-engineering projects like terraforming? If human beings create a living ecosphere on Mars, should we see ourselves as eco-constituents subsumed by a greater natural cycle as we are here on Earth, or, in a sense, should we regard ourselves as semi-gods, directly responsible for the martian natural cycle’s very existence? How should we organize a new society on Mars? Do Earthly political philosophies still apply? Once society on Mars is established, what responsibility will Martian humans have to their Earth-dwelling counterparts, and vice versa, if any? And should we today move further into the final frontier by small precautionary steps or giant proactionary leaps? Barring any unforeseen fatal design flaws or socio-political roadblocks, we could soon have our generation’s Neil Armstrong moment on the red planet. And we’d get there on solar power no less. To the sun god!

Cheers,

jmk

The Solar Impulse! Flight without fossil fuels

Perusing NPR this morning I stumbled across a report about this solar tech gem. The Solar Impulse, an aircraft powered entirely by solar power (with storage tech sufficient to keep it airborne day and night), stands poised to change the very face of aviation: to enable us to travel the world “without fuel or pollution.” Now, needless to say, there is work to be done. The plane itself is still in R&D, as its engineers have yet to pressurize, oxygenate, or heat the cabin–and its top speed is still comparable to a sluggish car (40-50 mph). But the Impulse successfully completed its inaugural flight over Switzerland and plans to fly California to New York in 2015.

Its creators, with Faustian enthusiasm, aim to challenge the impossible; to overturn conventional wisdom about sustainable development and clean energy technology. To be certain, taking to the sky without the help of fossil fuels does exactly that (albiet, I’m sure fossil fuels were used somewhere along the process of engineering the Impulse). In the words of aviation pioneer and Impulse designer Bertrand Piccard, the plane carries not passengers, but a message: one of inspiration for the quality of future of humanity, and our relationship with the Earth and its resources.

I maintain that our relationship with the sun is a special one. Life–energy–the escalation of biological complexity despite the second law of thermodynamics–the sun makes it all possible. And here again we are reminded that with dedication and ingenuity, we need not revert to burning its multi-million year old fossil energy reserves to perpetuate our quality of life. After all, whether we’re talking about coal, oil, natural gas, biomass, or wind–these are all indirect manifestations of solar power: biomass through photosynthesis; coal, oil, and natural gas through the fossilization of biomass; wind through atmospheric temperature and pressure changes as the sun heats the air. Logically, to channel solar power directly to the human energy demand is more efficient and therefore more sustainable than waiting for its conversion into fossilized organic material (or even wind, though the turn around in the case of wind is tremendously shorter than FFs)–we simply need the proper technology to take our consumption to the original source. The Solar Impulse is a strong step in that direction.

Despite being optimistic, I still struggle with my own skepticism about technoscientific utopian progressivism and techno-cornucopianism–that with enough time and technology human beings can overcome the paradox of progress–because it’s not obvious to me that the rare Earth resources we need to continue the flow of technological innovation will be recoverable indefinitely, or that organized civil society will remain stable for long enough to foster such technological advancement. But such skepticism is more of nagging intuition, substantiated by the provocation of John Gray and participants in the Dark Mountain Project, than an empirical problem. Malthus, as we’ve seen, was not correct (at least not yet)–and while I am confident that eventually the Earth’s human carrying capacity will be upon us, we may be able to stay off a painful population negative feedback cycle through (relatively) cheap and emerging energy (shale gas, wind, solar, nuclear) and intentional (e.g. – birth control distribution, family-limit policies, etc. ) and indirect (e.g. – women’s education, resource scarcity affecting reproductive instincts, etc.) population management methods long enough to smoothly and comfortably reach the point of sustainability (sustainable consumption & sustainable population). Human beings, as Lovelock predicts, will find a way to muddle through.

As Gray makes clear, to believe in a human future of technoscientific progress is a matter of faith. Even more so, to believe in progress as sustainability is an even bolder exercise of optimism. Whether such faith is hopelessly naive will be revealed in due course. But in the meantime, advances in solar tech like the Solar Impulse give me reason to keep believing. Or at least to be excited about the future.

Cheers, jmk

Solar panels for all, precautionary or proactionary?

I think Crane and Kennedy have a point here – relying on solar energy, specifically putting solar paneling on residential roofs, are a good way to reduce the risk of relying on an antiquated electrical grid system that’s highly vulnerable to storms and natural disasters (like Sandy). The traditional grid, knitted together by a bucolic web of wooden poles and copper wires, leaves society exposed should part of its fragile infrastructure fail.

So, switching to residential, distributive solar can be seen a precautionary move — it’s too risky to keep depending on a grid that falls apart if power lines go down with a tree limb. Independent, “off-grid” home power systems would strengthen each link of the social chain mail so that when nature throws us a curve ball we aren’t left in the dark for days or weeks on end. For the risk-averse, these are worthy concerns. Not to mention that solar energy doesn’t carry the bouquet of environmental and human health risks that accompany the extreme ways that we extract fossil fuels these days (horizontal drilling and hydraulic fracturing for natural gas, deep water drilling for oil, and mountaintop removal mining for coal).

Often we’ll hear opponents of renewables frame alternative energy as being too risky. The wind and sun are intermitted, the technology is inefficient, and the costs are uncompetitive — or so they say. But with better battery technology, dramatic improvements in solar cell efficiency, and expectations of lower home installation costs these arguments against renewables won’t hold water in public for much longer. Soon, in fact, this framing will probably reverse itself and renewables will be understood as safe, sensible, and reliable, while fossil fuels will be seen as dangerous, costly, and anachronistic.

But should we understand support for solar energy as precautionary or proactionary?

On one hand,  using residential and distributive solar power is a precautionary move away from the risks of depending on fossil fuels and the outmoded electrical grid. In this sense, the switch to solar is less about the goodness of solar energy in particular, but rather about the consequence of mitigating the risks of fossil fuel use. To put it another way, to precautionary supporters of solar, it’s likely that any alternative energy source would be satisfactory since the shift is more about getting away from the risks of fossil fuels than it is about shifting to a particular kind of renewable energy.

On the other hand, proactionary supporters of solar might emphasize the goodness of solar energy itself over and above its consequence of replacing fossil fuels alone. Solar energy is good not simply because we need to mitigate the risks of fossil fuel use, but because solar energy represents progress. Fossil fuels remind us of primitive industrialism, while solar power speaks to our progressive refinement toward symbiosis with each other and the environment. Indeed, for proactionaries to put such immense trust in new solar technology despite its relative nascence is somewhat risky, but switching to solar is a matter of moral obligation; it is our duty to ourselves, to future generations, and to the non-human to make the change.

So, should we be proactionary or precautionary about solar power? I’m not convinced we have to choose — I support solar technology for precautionary and proactionary purposes. I am deeply concerned with mitigating the risks of our continued reliance on fossil fuels because they are inherently finite, unsustainable, environmentally damaging to extract, and pose threats to human health during development and when burned. Simultaneously, I believe that our relationship with the Sun is a special one and that it makes sense on ethical, axiological, and existential levels that the source of life should also be the source of high quality living.

Today, our visions of the Good Life are intimately intertwined with energy. High quality living means energy intensive living (with the exception of a few rogue primitivists out there). So the progressive challenge is making such a lifestyle sustainable. Progress, in this sense, is sustainability. But solar energy is not all about progress in the long-term. It’s also about human and environmental safety in the short-term.

Usually we find ourselves in a conundrum when it comes to the precautionary v. proactionary distinction: either we accept some risk as the price of progress, or we sacrifice some progress in order to mitigate risk. The difficulty arises when people make divergent value judgments about the proper balance of risk and progress — and also when we assume that the two routes are mutually exclusive.

Solar energy technology, however, defeats the idea that we can only reduce risk at the cost of progress. Making the gradual switch to solar constitutes progress toward sustainability and reduces the risks of using fossil fuels. We can be proactionary and precautionary at the same timeNow that’s progress.

Cheers!

Kincaid

Ultra-thin high-efficiency organic solar cells from Princeton

Fresh out of a first round of experiments at Princeton’s NanoStructure Laboratory, Dr. Steven Chou and Dr. Wei Ding released this report on the progress of their “plasmonic cavity with subwavelength hole-array” solar cell (PlaCSH). Using 30 nanometer-thick gold mesh instead of the indium-tin-oxide (ITO) layer that photovoltaic solar cells usually make use of, the Princeton team has managed to make PlaCSH solar cells 175% more efficient than traditional PV technology.

The gold nano-mesh is more efficient in several ways, thinking about the life cycle of solar cells. Indeed, gold is a rare metal (one that’s ever-increasing in value) but actually ends up being more cost effective than continuing to use the indium-tin-oxide compound we’ve been using thus far. Gold itself may not be cheap, but we’re talking about nano scale technology here — a nanometer, measuring in at one billionth of a meter, is usually used to scale dimensions at the atomic level. We use micrometers (a mere millionth of a meter) to measure human hair, just to give you an idea of how thin these gold nano-mesh layers are — the gold nano-mesh just doesn’t require that much material, especially considering the efficiency of Dr. Chou’s invented nanofabrication method. Price is a real measure of real resources, so getting the cost of manufacturing these solar cells down makes sense from an environmental sustainability perspective too, not just economic practicality.

Most importantly, however, the PlaCSH solar cells lose far less energy to reflection than traditional PV cells. Once light energy passes through the nano-mesh, it’s incredibly difficult for it to escape. The points in the nano-mesh through which light would usually be reflected back out are actually smaller than the photons themselves, so these otherwise rogue photons stick around to lend us their energy after all. The PlaCSH cells are significantly more efficient under cloud-cover, too, for those concerned with intermittency.

This innovative technology has the potential to revolutionize the solar energy industry and loosen the grip of fossil fuel dependency. Once the upfront costs of solar cells become competitive with the overall costs of fossil fuel production, it will make more economic sense to invest in solar technology over natural gas, e.g., because the pay-back period will be much shorter. The solar energy route offers reasonable (and decreasing) upfront costs and little to no maintenance costs — and, most obviously, we have more solar energy than we know what to do with. We may have to mine the gold to produce the nano-mesh, so it’s not totally benign, but it’s far less invasive than, say, Mountaintop Removal Mining.

Here to another step toward our sustainable energy future!

Cheers,

JMK

PS – This article by Grant Brunner of ExtremeTech has some nice diagrams depicting the way PlaCSH solar cells work in comparison to traditional ITO PV.

Third year of triple-digit growth in US solar PV market

In the second quarter of 2012 the US installed 742 Megawatts of utility-scale solar PV, reports GTM Research. This growth is largely attributable to the new Agua Caliente, Mesquite, and Silver State solar plants, all of which were backed by federal loan guarantees. I would like to think this means we can put the Solyndra issue to rest. Loan guarantee programs help free up capital for important projects to which private investors suffering from Keynesian mass psychosis are reluctant to commit. Sure, they can be risky at times, like all investments, but developing renewable energy technology stands as perhaps the most salient hurdle to perpetuating our high standard of living, making our energy intensive lifestyles sustainable, and maintaining a healthy environment for our contemporaries, future generations, and non-humans. For we who champion progress as sustainable improvements in science, technology, and social organization, this is surely welcome news.

JM Kincaid

Solar in the southwest

The US Department of Energy and the Department of the Interior’s Bureau of Land Management have released the “Final Programmatic Environmental Impact Statement” (FPEIS) for utility-scale solar energy operations on public lands in Arizona, California, Colorado, Nevada, Utah, and New Mexico. This “solar roadmap” estimates we will be able to harness 23,700 megawatts from 285,000 acres of developed lands, enough to power 7 million US homes with renewable energy.

285,000 acres might sound substantial, but everything we do involves trade offs. Deciding to pursue one opportunity inherently means not pursuing another, hence the name opportunity cost. But 285,000 acres only make up one ten-thousandth of the United States’ total acreage, meaning that from one hundredth of one percent of our land we could supply power to 2.3% of our country’s population. Seems like a good trade off to me. To the sun god!

JM Kincaid

US solar installs

Welcome news from the editors at real clear energy, here’s one of their “charticles” tracking US solar installations. Megawatts of solar technology installed went from 100 MW in 2006 to 1000 MW in 2010! Of course that number must be qualified by the efficiency of solar tech, as the editors explain, but this is expected to improve over time. Will we see infinite linear progress in solar energy technology? No. But we can certainly get the cost per kWh down from Forbes’ calculation of 7.7 cents/kWh so that solar is cost competitive with other energy sources.

JM Kincaid

Dave Roberts on the future of solar

We had the pleasure of speaking with Dave as part of Bard CEP’s National Climate Seminar in the fall of 2011, his take is always interesting.

Here he interviews venture capitalist Michael Leibreich on the future of solar energy, part three of a three part interview.

Leibreich’s answer to Dave’s final question raises an interesting point about the way we think about interest/discounting rates, how we value the future relative to the present, and how we perceive the risks of investment versus the risks of non-investment. Achieving 80% renewables by 2050 would be expensive upfront and risky (depending on new technology is always risky), but perpetuating our fossil fuel use has its own risks (environmental, human health, etc) and is subject to unpredictable swings in fuel costs. As Dave points out, this debate could be one about economics, but it tends to verge on more philosophical questions about the risks and uncertainties that come with new technology, much in line with the proactionary-precautionary question raised by Steve Fuller and at CSID.

Cheers!

JM Kincaid

Justin Hall-Tipping on grid-free solar energy and nanotechnology

A colleague of mine from Bard CEP posted this TED Talk by Justin Hall-Tipping in reply to my post on Donald Sagoway’s liquid metal battery. Hall-Tipping presents on carbon nanotechnology and grid-free solar energy — a truly invigorating watch. It’s ingenuity and creativity of this kind that keeps my romanticizing primitivism in check. Cheers!

JM Kincaid